If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=160000
We move all terms to the left:
x^2-(160000)=0
a = 1; b = 0; c = -160000;
Δ = b2-4ac
Δ = 02-4·1·(-160000)
Δ = 640000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{640000}=800$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-800}{2*1}=\frac{-800}{2} =-400 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+800}{2*1}=\frac{800}{2} =400 $
| y+4.72=8.91 | | -8a+4a=12-a | | 7=2y-5 | | y-5.5=7.26 | | 5x-8=7+6 | | 16y+y=-14 | | y=2=1/2*0 | | 8/a=24 | | 58+68=3x | | -x+2-1/2x=2 | | -6x^2+12x=7 | | 135-x=45 | | 10+5x+20=180 | | x^2+4x+4=12 | | 15-x=90 | | k+1=-6 | | x^2-21=100 | | 9x+13=2x+17 | | 13=1/4(2x+16 | | (y−4)(y+5)−5y+20=0 | | 2y=16-4*4 | | 55+90=10x+45 | | 14x-6=22-7x | | 10+5x+37=180 | | 7x-1=360 | | 1.2x-1.1x=10 | | r2=16.7 | | (3x+25)-42=4x | | x^2+6=55 | | 3+2.7x=9.6+3.2x* | | 7x+17+56+37=180 | | 100=–5(h+18) |